

Encontro de Saberes 2015 - XXIII Seminário de Iniciação Científica

Aplicação de materiais alternativos funcionalizados como catalisadores ácidos em transformações de compostos terpênicos

MARIA STELLA PALHARES RIBEIRO (Autor), CAMILA GROSSI VIEIRA (Orientador), KELLY ALESSANDRA DA SILVA ROCHA (Colaborador)

Seguindo a tendência atual do desenvolvimento de uma guímica ambientalmente correta, novos processos químicos têm sido desenvolvidos, em especial, aqueles que utilizam catalisadores. Podemos aliar o emprego do catalisador a outras alternativas que visem processos mais limpos, tais como uso de reagentes/solventes de fontes biorenováveis e de materiais alternativos funcionalizados como catalisadores heterogêneos. O canfeno é uma matéria-prima biorenovável, barata e abundante, que pode ser extraído de óleos da terebentina, a bergamota e do gengibre. Canfeno pode sofrer diferentes transformações catalíticas para obter derivados oxifuncionalizados de elevado valor e de interesse da indústria de química fina. Neste trabalho, foi desenvolvido um processo catalítico, realizado à 110°C, contendo 1,6 M do substrato (canfeno), 50 mg do catalisador ácido (EPS sulfonado ou resina Amberlyst 15), 0,8 M do dodecano (padrão primário), e butanol (usado como solvente). Conversões de 88% e 86% foram obtidas na presença dos catalisadores EPS sulfonado e resina Amberlyst 15, respectivamente, em 48 h de reação. Apenas um produto majoritário foi formado e com mesma seletividade (92%) nos dois sistemas catalíticos. Esse produto é derivado da adição nucleofílica de uma molécula do solvente à dupla ligação do substrato. Outros produtos foram formados em pequenas quantidades. O número de sítios ácidos dos catalisadores foi determinado por titulação ácido-base. O EPS sulfonado tem 0,02198 mol sítios ácidos/g e a resina tem 0,02222 mol sítios ácidos/g. Portanto, o EPS sulfonado apresenta atividade catalítica semelhante à resina Amberlyst 15 e pode ser usado como catalisador ácido em reações de eterificação do canfeno.

Instituição de Ensino: Universidade Federal de Ouro Preto